Available data

References and datasets included in the package.

chr_coordinates_hg19

Coordinates for hg19 chromosomes.

chr_coordinates_GRCh38

Coordinates for GRCh38 chromosomes.

example_dataset_CNAqc

Example CNAqc dataset.

example_PCAWG

Example PCAWG tumour

fpr_test

Data (simulation performance) from the trainig set to auto-tune epsilon.

intogen_drivers

List of Intogen driver genes per tumour type.

gene_coordinates_hg19

Coordinates for hg19 genes

gene_coordinates_GRCh38

Coordinates for GRCh38 genes

Data processing

Functions to manipulate and visualise the data.

init()

Creates a CNAqc object.

Mutations()

Extract mutations.

CNA()

Extract CNAs.

CNA_gene()

Extract per-gene copy number status.

get_drivers()

Extract drivers data.

plot_data_histogram()

Plot the read-counts data histograms.

plot_segments()

Plot CNA segments.

plot_segment_size_distribution()

Plot the length of clonal simple CNAs.

plot_karyotypes()

Plot counts and numbers of clonal simple CNAs.

plot_gw_counts()

Plot genome-wide mutation counts.

plot_gw_depth()

Plot genome-wide coverage.

plot_gw_vaf()

Plot genome-wide VAFs.

plot_icon_CNA()

A circular plot for simple clonal CNAs.

plot_qc()

Plot a summary of QC results.

split_by_chromosome()

Split a dataset by chromosome.

subsample()

Randomly subsample mutations.

subset_by_segment_karyotype()

Subset by clonal segments.

subset_by_segment_totalcn()

Subset clonal simple segments total copy number.

subset_by_minimum_CCF()

Subset mutations by minimum CCF

subset_by_segment_minmutations()

Retain clonal segments with minimum number of mutations.

subset_snvs()

Subset only SNVs.

print(<cnaqc>)

Print for class 'cnaqc'.

plot(<cnaqc>)

Plot for class 'cnaqc'.

wt_mutant_alleles()

Compute WT and mutant alleles per gene

Purity and ploidy QC

Analysis of calls by peak detection.

analyze_peaks()

QC by peak-detection algorithms.

auto_tolerance()

Determine the optimal error tolerance to QC clonal simple CNAs.

inspect_segment()

Plot VAFs across chromosomes.

plot_peaks_analysis()

Plot the results of peak analysis.

get_PASS_percentage()

Returns percentage of passed segments

CCF estimation

Computation of Cancer Cell Fractions data.

compute_CCF()

Compute CCF values.

CCF()

Extract CCF estimates.

plot_CCF()

Plot the CCF estimates in the data.

plot_gw_ccf()

Plot genome-wide CCFs.

Smoothing

Analysis and plotting functions to smooth segments.

smooth_segments()

Smooth simple clonal CNAs.

plot_smoothing()

Plot smoothed and non-smoohted segments.

Overfragmentation detection

Analysis and plotting functions to smooth segments.

detect_arm_overfragmentation()

Determines arm-level over-fragmentation patterns.

plot_arm_fragmentation()

Plot the arm level fragmentation test.

Pipelines and parsers

Pipelines and parsers implemented with CNAqc.

Sequenza_CNAqc()

CNAqc-based purity-optimisation pipeline for Sequenza.

parse_Battenberg()

Parse Battenberg calls.

Variants annotation detection

Annotation of putative variant drivers.

annotate_variants()

Annotate variants and drivers.

Cohort functions

Functions to visualise multiple objects at once.

plot_multisample_CNA()

Plots CNAs from multiple samples.

Mutational Signatures

Functions to convert and store mutational signature tables

SBS()

Augment SBS data for mutational signatures deconvolution

SBS_counts()

Extract SBS count data

plot_SBS()

Plost SBS counts

MAF interface

Functions to convert from CNAqc to Maf format.

as_maftools_obj()

Convert a CNAqc object to a maftools object.

as_maftools_cohort()

Convert a list of CNAqc object to a maftools object.

augment_with_maf()

Import MAF annotations.

augment_with_vep()

Import VEP annotations.