Plot the index of Divergent Evolutionary Trajectories, for a set of drivers
using function DET_index
. The plot is a barplot with colours reflecting
the number of distinct incoming edges in each driver (species), and the height
reflecting the actual DET index value.
plot_DET_index(x, ...)
x | A |
---|---|
... | Parmeters passed to function |
A `ggplot` object of the plot.
Other Plotting functions:
distinct_palette_few()
,
distinct_palette_many()
,
gradient_palette()
,
plot_clusters()
,
plot_dendrogram()
,
plot_drivers_clonality()
,
plot_drivers_graph()
,
plot_drivers_occurrence()
,
plot_jackknife_cluster_stability()
,
plot_jackknife_coclustering()
,
plot_jackknife_trajectories_stability()
,
plot_patient_CCF_histogram()
,
plot_patient_data()
,
plot_patient_mutation_burden()
,
plot_patient_oncoprint()
,
plot_patient_trees_scores()
# Data released in the 'evoverse.datasets' data('TRACERx_NEJM_2017_REVOLVER', package = 'evoverse.datasets') plot_DET_index(TRACERx_NEJM_2017_REVOLVER)#> # A tibble: 79 x 4 #> driver diversity N DET_index #> <chr> <dbl> <int> <dbl> #> 1 APC 0 1 0 #> 2 BRAF 0 1 0 #> 3 CDKN2A 0 1 0 #> 4 CHEK2 0 1 0 #> 5 CIC 0 1 0 #> 6 CMTR2 0 1 0 #> 7 COL2A1 0 1 0 #> 8 CREBBP 0 1 0 #> 9 CUX1 0 1 0 #> 10 DICER1 0 1 0 #> # … with 69 more rows# Passing parameters to DET_index plot_DET_index(TRACERx_NEJM_2017_REVOLVER, min.occurrences = 5)#> # A tibble: 17 x 4 #> driver diversity N DET_index #> <chr> <dbl> <int> <dbl> #> 1 CDKN2A 0 1 0 #> 2 COL2A1 0 1 0 #> 3 EGFR 0 1 0 #> 4 FAT1 0 1 0 #> 5 FGFR1 0 1 0 #> 6 KEAP1 0 1 0 #> 7 MYC 0 1 0 #> 8 NFE2L2 0 1 0 #> 9 NOTCH1 0 1 0 #> 10 PIK3CA 0 1 0 #> 11 PTEN 0 1 0 #> 12 RASA1 0 1 0 #> 13 SOX2 0 1 0 #> 14 STK11 0 1 0 #> 15 TERT 0 1 0 #> 16 KRAS 0.598 2 0.863 #> 17 TP53 1.42 5 0.880