
Package index
- 
          cov.df.example
- Example coverage data
- 
          vaf.df.example
- Example mutation data
- 
          vaf.df.example
- Example mutation data
- 
          fit()
- Creates an object of class mvnmm.
- 
          fit_mutations()
- Fit the mutations clustering
- 
          fit_phylogenies()
- Fit the phylogenetic trees
- 
          fit_growth_rates()
- Infer growth rates for each clone and subclone.
- 
          filter_dataset()
- Filters the input dataset.
- 
          get_lineages()
- Extract the data lineages.
- 
          get_dimensions()
- Extract the model dimensions.
- 
          get_timepoints()
- Extract the data timepoints.
- 
          get_cov_dataframe()
- Retrieve the coverage dataframe.
- 
          get_vaf_dataframe()
- Retrieve the mutations dataframe.
- 
          get_labels()
- Extract the observations labels.
- 
          get_unique_labels()
- Extract the list of unique observations labels.
- 
          get_unique_muts_labels()
- Retrieve the list of unique labels of mutation clusters.
- 
          get_mean()
- Extract the estimated mean parameters.
- 
          get_sigma()
- Extract the estimated variance parameters.
- 
          get_covariance_Sigma()
- Extract the estimated covariance matrices.
- 
          get_covariance_Cholesky()
- Extract the estimated Cholesky matrices, used to factorise the covariance matrix.
- 
          get_weights()
- Extract the estimated mixing proportions.
- 
          get_z_probs()
- Extract the estimated posterior probabilities.
- 
          get_ISs()
- Get the number of ISs per cluster.
- 
          estimate_n_pops()
- Function implemented to estimate the real number of clones in each cluster.
- 
          plot_scatter_density()
- 2D scatterplot and density
- 
          plot_mixture_weights()
- Barplot of the per-cluster mixture weights and number of ISs.
- 
          plot_marginal()
- Histogram of the marginal distribution of each dimension
- 
          plot_mullerplot()
- Muller plot
- 
          plot_growth_regression()
- Visualize the regression given the infered growth rates.
- 
          plot_growth_rates()
- Visualize the infered growth rates.
- 
          plot_vaf()
- VAF 2D scatterplot
- 
          plot_vaf_time()
- VAF over time
- 
          plot_phylogeny()
- Clonal evolution trees
- 
          plot_differentiation_tree()
- Visualize the number of subclones on the differentiation tree
Training
Functions to visualize losses, Information Criteria and gradient norms computed during training.
- 
          plot_losses()
- Function to plot the training losses.
- 
          plot_IC()
- Function to plot the Information Criteria computed during model selection.
- 
          plot_gradient_norms()
- Function to plot the gradients norms.
- 
          print(<mvnmm>)
- Print method
- 
          plot(<mvnmm>)
- Mullerplot
- 
          configure_environment()
- Configure the reticulate environment
- 
          have_loaded_env()
- Check if there is a loaded condaenvironment.
- 
          have_python_deps()
- Check if Pythonpackages are installed in the environment.
- 
          which_conda_env()
- Retrieve the name of the currently loaded environment.
- 
          load_conda_env()
- Load the input condaenvironment.