Skip to contents

Data

Example of the input datasets and of the fitted object.

cov.df.example
Example coverage data
vaf.df.example
Example mutation data
vaf.df.example
Example mutation data

Fit function

Main function to perform the fit of the model.

fit()
Creates an object of class mvnmm.
fit_mutations()
Fit the mutations clustering
fit_phylogenies()
Fit the phylogenetic trees
fit_growth_rates()
Infer growth rates for each clone and subclone.
filter_dataset()
Filters the input dataset.

Getter functions

Functions to extract the main elements of the fitted object.

get_lineages()
Extract the data lineages.
get_dimensions()
Extract the model dimensions.
get_timepoints()
Extract the data timepoints.
get_cov_dataframe()
Retrieve the coverage dataframe.
get_vaf_dataframe()
Retrieve the mutations dataframe.
get_labels()
Extract the observations labels.
get_unique_labels()
Extract the list of unique observations labels.
get_unique_muts_labels()
Retrieve the list of unique labels of mutation clusters.
get_mean()
Extract the estimated mean parameters.
get_sigma()
Extract the estimated variance parameters.
get_covariance_Sigma()
Extract the estimated covariance matrices.
get_covariance_Cholesky()
Extract the estimated Cholesky matrices, used to factorise the covariance matrix.
get_weights()
Extract the estimated mixing proportions.
get_z_probs()
Extract the estimated posterior probabilities.
get_ISs()
Get the number of ISs per cluster.
estimate_n_pops()
Function implemented to estimate the real number of clones in each cluster.

Visualization functions

Functions to visualize the fit results.

plot_scatter_density()
2D scatterplot and density
plot_mixture_weights()
Barplot of the per-cluster mixture weights and number of ISs.
plot_marginal()
Histogram of the marginal distribution of each dimension
plot_mullerplot()
Muller plot
plot_growth_regression()
Visualize the regression given the infered growth rates.
plot_growth_rates()
Visualize the infered growth rates.
plot_vaf()
VAF 2D scatterplot
plot_vaf_time()
VAF over time
plot_phylogeny()
Clonal evolution trees
plot_differentiation_tree()
Visualize the number of subclones on the differentiation tree

Training

Functions to visualize losses, Information Criteria and gradient norms computed during training.

plot_losses()
Function to plot the training losses.
plot_IC()
Function to plot the Information Criteria computed during model selection.
plot_gradient_norms()
Function to plot the gradients norms.

S3 object methods

Print and plot methods for the fitted object.

print(<mvnmm>)
Print method
plot(<mvnmm>)
Mullerplot

Helper functions

Function to configure and install the required dependencies.

configure_environment()
Configure the reticulate environment
have_loaded_env()
Check if there is a loaded conda environment.
have_python_deps()
Check if Python packages are installed in the environment.
which_conda_env()
Retrieve the name of the currently loaded environment.
load_conda_env()
Load the input conda environment.