
Package index
-
cov.df.example - Example coverage data
-
vaf.df.example - Example mutation data
-
vaf.df.example - Example mutation data
-
fit() - Creates an object of class
mvnmm.
-
fit_mutations() - Fit the mutations clustering
-
fit_phylogenies() - Fit the phylogenetic trees
-
fit_growth_rates() - Infer growth rates for each clone and subclone.
-
filter_dataset() - Filters the input dataset.
-
get_lineages() - Extract the data lineages.
-
get_dimensions() - Extract the model dimensions.
-
get_timepoints() - Extract the data timepoints.
-
get_cov_dataframe() - Retrieve the coverage dataframe.
-
get_vaf_dataframe() - Retrieve the mutations dataframe.
-
get_labels() - Extract the observations labels.
-
get_unique_labels() - Extract the list of unique observations labels.
-
get_unique_muts_labels() - Retrieve the list of unique labels of mutation clusters.
-
get_mean() - Extract the estimated mean parameters.
-
get_sigma() - Extract the estimated variance parameters.
-
get_covariance_Sigma() - Extract the estimated covariance matrices.
-
get_covariance_Cholesky() - Extract the estimated Cholesky matrices, used to factorise the covariance matrix.
-
get_weights() - Extract the estimated mixing proportions.
-
get_z_probs() - Extract the estimated posterior probabilities.
-
get_ISs() - Get the number of ISs per cluster.
-
estimate_n_pops() - Function implemented to estimate the real number of clones in each cluster.
-
plot_scatter_density() - 2D scatterplot and density
-
plot_mixture_weights() - Barplot of the per-cluster mixture weights and number of ISs.
-
plot_marginal() - Histogram of the marginal distribution of each dimension
-
plot_mullerplot() - Muller plot
-
plot_growth_regression() - Visualize the regression given the infered growth rates.
-
plot_growth_rates() - Visualize the infered growth rates.
-
plot_vaf() - VAF 2D scatterplot
-
plot_vaf_time() - VAF over time
-
plot_phylogeny() - Clonal evolution trees
-
plot_differentiation_tree() - Visualize the number of subclones on the differentiation tree
Training
Functions to visualize losses, Information Criteria and gradient norms computed during training.
-
plot_losses() - Function to plot the training losses.
-
plot_IC() - Function to plot the Information Criteria computed during model selection.
-
plot_gradient_norms() - Function to plot the gradients norms.
-
print(<mvnmm>) - Print method
-
plot(<mvnmm>) - Mullerplot
-
configure_environment() - Configure the reticulate environment
-
have_loaded_env() - Check if there is a loaded
condaenvironment.
-
have_python_deps() - Check if
Pythonpackages are installed in the environment.
-
which_conda_env() - Retrieve the name of the currently loaded environment.
-
load_conda_env() - Load the input
condaenvironment.