Package index
-
cov.df.example
- Example coverage data
-
vaf.df.example
- Example mutation data
-
vaf.df.example
- Example mutation data
-
fit()
- Creates an object of class
mvnmm
.
-
fit_mutations()
- Fit the mutations clustering
-
fit_phylogenies()
- Fit the phylogenetic trees
-
fit_growth_rates()
- Infer growth rates for each clone and subclone.
-
filter_dataset()
- Filters the input dataset.
-
get_lineages()
- Extract the data lineages.
-
get_dimensions()
- Extract the model dimensions.
-
get_timepoints()
- Extract the data timepoints.
-
get_cov_dataframe()
- Retrieve the coverage dataframe.
-
get_vaf_dataframe()
- Retrieve the mutations dataframe.
-
get_labels()
- Extract the observations labels.
-
get_unique_labels()
- Extract the list of unique observations labels.
-
get_unique_muts_labels()
- Retrieve the list of unique labels of mutation clusters.
-
get_mean()
- Extract the estimated mean parameters.
-
get_sigma()
- Extract the estimated variance parameters.
-
get_covariance_Sigma()
- Extract the estimated covariance matrices.
-
get_covariance_Cholesky()
- Extract the estimated Cholesky matrices, used to factorise the covariance matrix.
-
get_weights()
- Extract the estimated mixing proportions.
-
get_z_probs()
- Extract the estimated posterior probabilities.
-
get_ISs()
- Get the number of ISs per cluster.
-
estimate_n_pops()
- Function implemented to estimate the real number of clones in each cluster.
-
plot_scatter_density()
- 2D scatterplot and density
-
plot_mixture_weights()
- Barplot of the per-cluster mixture weights and number of ISs.
-
plot_marginal()
- Histogram of the marginal distribution of each dimension
-
plot_mullerplot()
- Muller plot
-
plot_growth_regression()
- Visualize the regression given the infered growth rates.
-
plot_growth_rates()
- Visualize the infered growth rates.
-
plot_vaf()
- VAF 2D scatterplot
-
plot_vaf_time()
- VAF over time
-
plot_phylogeny()
- Clonal evolution trees
-
plot_differentiation_tree()
- Visualize the number of subclones on the differentiation tree
Training
Functions to visualize losses, Information Criteria and gradient norms computed during training.
-
plot_losses()
- Function to plot the training losses.
-
plot_IC()
- Function to plot the Information Criteria computed during model selection.
-
plot_gradient_norms()
- Function to plot the gradients norms.
-
print(<mvnmm>)
- Print method
-
plot(<mvnmm>)
- Mullerplot
-
configure_environment()
- Configure the reticulate environment
-
have_loaded_env()
- Check if there is a loaded
conda
environment.
-
have_python_deps()
- Check if
Python
packages are installed in the environment.
-
which_conda_env()
- Retrieve the name of the currently loaded environment.
-
load_conda_env()
- Load the input
conda
environment.