Function to fit the input data.
Usage
fit(
  cov.df,
  vaf.df = NULL,
  infer_phylogenies = TRUE,
  infer_growth = TRUE,
  k_interval = c(5, 15),
  n_runs = 1,
  steps = 500,
  min_steps = 20,
  lr = 0.005,
  p = 1,
  min_frac = 0,
  max_IS = NULL,
  check_conv = TRUE,
  covariance = "full",
  hyperparams = list(),
  default_lm = TRUE,
  timepoints_to_int = list(),
  show_progr = FALSE,
  store_grads = TRUE,
  store_losses = TRUE,
  store_params = FALSE,
  seed_optim = TRUE,
  seed = 6,
  seed_init = reticulate::py_none(),
  sample_id = ""
)Arguments
- cov.df
- Input coverage dataset. It must have at least the columns - coverage, and- IS, and additional columns- timepointsand- lineage, will be added if missing, assuming single timepoint and lineage.
- vaf.df
- Input VAF dataset. If not - NULL, the mutations clustering will be performed. It must have at least the columns- mutation,- IS,- alt,- dp, and additional- vaf,- timepoints,- lineage,- IS,- mutation, with the number of reads for the mutated allele, overall depth, vaf values, timepoint, lineage, IS and mutation, respectively.
- infer_phylogenies
- A Boolean. If set to - TRUE, the function will also compute and attach to the returned object the phylogenetic trees for each cluster.
- k_interval
- Interval of K values to test. 
- n_runs
- Number of runs to perform for each K. 
- steps
- Maximum number of steps for the inference. 
- lr
- Learning rate used in the inference. 
- p
- Numeric value used to check the convergence of the parameters. 
- min_frac
- add 
- max_IS
- add 
- check_conv
- A Boolean. If set to - TRUE, the function will check for early convergence, otherwise it will perform- stepsiterations.
- covariance
- Covariance type for the Multivariate Gaussian. 
- hyperparams
- add 
- default_lm
- add 
- timepoints_to_int
- add 
- show_progr
- A Boolean. If - TRUE, the progression bar will be shown during inference.
- store_grads
- A Booolean. If - TRUE, the gradient norms for the parameters at each iteration will be stored.
- store_losses
- A Boolean. If - TRUE, the computed losses for the parameters at each iteration will be stored.
- store_params
- A Boolean. If - TRUE, the estimated parameters at each iteration will be stored.
- seed_optim
- add 
- seed
- Value of the seed. 
- sample_id
- add 
