library(lineaGT)
#> ✔ Loading ctree, 'Clone trees in cancer'. Support : <https://caravagn.github.io/ctree/>
#> ✔ Loading VIBER, 'Variational inference for multivariate Binomial mixtures'. Support : <https://caravagn.github.io/VIBER/>
#> ✔ Loading lineaGT, 'Lineage inference from gene therapy'. Support : <https://caravagnalab.github.io/lineaGT/>
#> ! The 'lineagt-env' environment is already loaded!
# library(magrittr)
The fit
function of the library requires two input
datasets: one dataset with the coverage observation and one with the
mutations variant allele number of reads and per-locus depth.
Coverage Dataframe
The first dataframe requires the following columns:
IS
: the integration site ID,timepoints
: the longitunal timepoint,lineage
: the cell lineage name,coverage
the number of reads assigned to the ISs.
If lineage
and timepoints
columns are not
present, a single longitunal observation and single lineage will be
assumed.
A dataset example is the following:
data(cov.df.example)
cov.df.example
#> # A tibble: 428 × 4
#> IS timepoints lineage coverage
#> <chr> <chr> <chr> <int>
#> 1 IS1 t1 l1 124
#> 2 IS1 t2 l1 190
#> 3 IS1 t1 l2 2
#> 4 IS1 t2 l2 6
#> 5 IS10 t1 l1 4
#> 6 IS10 t2 l1 14
#> 7 IS10 t1 l2 0
#> 8 IS10 t2 l2 12
#> 9 IS100 t1 l1 0
#> 10 IS100 t2 l1 418
#> # ℹ 418 more rows
Mutations Dataframe
The second dataframe requires the following columns:
IS
: the integration site ID,mutation
: the mutation ID,timepoints
: the longitunal timepoint,lineage
: the cell lineage name,alt
: the per-locus variant allele number of reads,dp
: the per-locus total number of reads, hence the per-locus depth.
A dataframe example is the following:
data(vaf.df.example)
vaf.df.example
#> # A tibble: 116 × 6
#> IS mutation timepoints lineage alt dp
#> <chr> <chr> <chr> <chr> <dbl> <dbl>
#> 1 IS1 mut1 t1 l1 58 134
#> 2 IS1 mut1 t2 l1 53 173
#> 3 IS1 mut1 t1 l2 0 26
#> 4 IS1 mut1 t2 l2 90 322
#> 5 IS10 mut12 t1 l1 0 372
#> 6 IS10 mut12 t2 l1 0 146
#> 7 IS10 mut12 t1 l2 0 57
#> 8 IS10 mut12 t2 l2 0 482
#> 9 IS11 mut13 t1 l1 160 372
#> 10 IS11 mut13 t2 l1 0 146
#> # ℹ 106 more rows