Returns the statistics about the trees that are available in the cohort. The function can be run on a subset of patients.

Stats_trees(x, patients = x$patients)

Arguments

x

A REVOLVER cohort.

patients

The patients for which the summaries are computed.

Value

A tibble with the driver stastics.

See also

Other Summary statistics: DET_index(), Stats_cohort(), Stats_drivers(), Stats_fits(), Stats()

Examples

# Data released in the 'evoverse.datasets' data('TRACERx_NEJM_2017_REVOLVER', package = 'evoverse.datasets') # Get the stats for all patients Stats_trees(TRACERx_NEJM_2017_REVOLVER)
#> # A tibble: 99 x 6 #> patientID hasTrees numTrees maxScore minScore combInfTransf #> <chr> <lgl> <int> <dbl> <dbl> <int> #> 1 CRUK0001 TRUE 3 0.111 0.111 3 #> 2 CRUK0002 TRUE 2 0.75 0.0833 2 #> 3 CRUK0003 TRUE 1 1 1 1 #> 4 CRUK0004 TRUE 1 1 1 1 #> 5 CRUK0005 TRUE 1 1 1 1 #> 6 CRUK0006 TRUE 2 0.667 0.167 2 #> 7 CRUK0007 TRUE 1 1 1 1 #> 8 CRUK0008 TRUE 1 1 1 1 #> 9 CRUK0009 TRUE 1 1 1 1 #> 10 CRUK0010 TRUE 1 1 1 1 #> # … with 89 more rows
# And subset the patients Stats_trees(TRACERx_NEJM_2017_REVOLVER, patients = c('CRUK0001', 'CRUK0002'))
#> # A tibble: 2 x 6 #> patientID hasTrees numTrees maxScore minScore combInfTransf #> <chr> <lgl> <int> <dbl> <dbl> <int> #> 1 CRUK0001 TRUE 3 0.111 0.111 3 #> 2 CRUK0002 TRUE 2 0.75 0.0833 2