Returns the number of clonal and subclonal occurrences of the drivers in the cohort, and their percentage relative to the cohort size. The function can be run on a subset of drivers.

Stats_drivers(x, drivers = x$variantIDs.driver)

Arguments

x

A REVOLVER cohort.

drivers

The drivers for which the summaries are computed.

Value

A tibble with the driver stastics.

See also

Other Summary statistics: DET_index(), Stats_cohort(), Stats_fits(), Stats_trees(), Stats()

Examples

# Data released in the 'evoverse.datasets' data('TRACERx_NEJM_2017_REVOLVER', package = 'evoverse.datasets') # Get the stats for all patients Stats_drivers(TRACERx_NEJM_2017_REVOLVER)
#> # A tibble: 79 x 7 #> variantID numClonal p_clonal numSubclonal p_subclonal N_tot p_tot #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 TP53 53 0.535 3 0.0303 56 0.566 #> 2 KRAS 24 0.242 4 0.0404 28 0.283 #> 3 EGFR 21 0.212 1 0.0101 22 0.222 #> 4 PIK3CA 20 0.202 1 0.0101 21 0.212 #> 5 CDKN2A 14 0.141 0 0 14 0.141 #> 6 SOX2 14 0.141 0 0 14 0.141 #> 7 KEAP1 12 0.121 0 0 12 0.121 #> 8 TERT 11 0.111 2 0.0202 13 0.131 #> 9 FGFR1 9 0.0909 0 0 9 0.0909 #> 10 STK11 8 0.0808 0 0 8 0.0808 #> # … with 69 more rows
# And subset the patients Stats_drivers(TRACERx_NEJM_2017_REVOLVER, drivers = c('TP53', 'KRAS'))
#> # A tibble: 2 x 7 #> variantID numClonal p_clonal numSubclonal p_subclonal N_tot p_tot #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 TP53 53 0.535 3 0.0303 56 0.566 #> 2 KRAS 24 0.242 4 0.0404 28 0.283