Returns a tibble that extends the result of Stats_trees with information about the fit models. Compared to summaries returns by other Stats_* functions, the information from this one is precomputed.

Stats_fits(x, patients = x$patients)

Arguments

x

A REVOLVER cohort where fits have been computed.

patients

The patients for which the summaries are required.

Value

A tibble with the fits stastics.

See also

Other Summary statistics: DET_index(), Stats_cohort(), Stats_drivers(), Stats_trees(), Stats()

Examples

# Data released in the 'evoverse.datasets' data('TRACERx_NEJM_2017_REVOLVER', package = 'evoverse.datasets') # Get the stats for all patients Stats_fits(TRACERx_NEJM_2017_REVOLVER)
#> # A tibble: 99 x 9 #> patientID hasTrees numTrees maxScore minScore combInfTransf Solution #> <chr> <lgl> <int> <dbl> <dbl> <int> <int> #> 1 CRUK0001 TRUE 3 0.111 0.111 3 1 #> 2 CRUK0002 TRUE 2 0.75 0.0833 2 1 #> 3 CRUK0003 TRUE 1 1 1 1 1 #> 4 CRUK0004 TRUE 1 1 1 1 1 #> 5 CRUK0005 TRUE 1 1 1 1 1 #> 6 CRUK0006 TRUE 2 0.667 0.167 2 1 #> 7 CRUK0007 TRUE 1 1 1 1 1 #> 8 CRUK0008 TRUE 1 1 1 1 1 #> 9 CRUK0009 TRUE 1 1 1 1 1 #> 10 CRUK0010 TRUE 1 1 1 1 1 #> # … with 89 more rows, and 2 more variables: converged <lgl>, penalty <dbl>
# And subset the patients Stats_fits(TRACERx_NEJM_2017_REVOLVER, patients = c('CRUK0001', 'CRUK0002'))
#> # A tibble: 2 x 9 #> patientID hasTrees numTrees maxScore minScore combInfTransf Solution converged #> <chr> <lgl> <int> <dbl> <dbl> <int> <int> <lgl> #> 1 CRUK0001 TRUE 3 0.111 0.111 3 1 TRUE #> 2 CRUK0002 TRUE 2 0.75 0.0833 2 1 TRUE #> # … with 1 more variable: penalty <dbl>