Generate a random MOBSTER model, its data and creates a plot for it.
random_dataset( N = 5000, K_betas = 2, pi_tail_bounds = c(0.2, 0.4), pi_min = 0.1, Betas_separation = 0.1, Beta_variance_scaling = 1000, Beta_bounds = c(0.1, 0.9), shape_bounds = c(1, 1, 3), scale = 0.05, seed = NULL )
N | Number of samples to generate (mutations). |
---|---|
K_betas | Number of Beta components (subclones). |
pi_tail_bounds | 2D vector with min and max size of the tail's mutations (proportions). |
pi_min | Minimum mixing proportion for every component. |
Betas_separation | Minimum separation between the means of the Beta components. |
Beta_variance_scaling | The variance of the Beta is generated as U[0,1] and scaled by this value. Values on the order of 1000 give low variance, 100 represents a dataset with quite some dispersion ( compared to a putative Binomial generative model). |
Beta_bounds | Range of values to sample the Beta means. |
shape_bounds | Range of values to sample the tail shape, default [1, 3], |
scale | Tail scale, default 0.05. |
seed | The seed to fix the process, default is 123. |
A list with the dataset in a tibble, the model parameters and a plot the data.
#> $data #> # A tibble: 5,000 x 2 #> VAF simulated_cluster #> <dbl> <chr> #> 1 0.275 C1 #> 2 0.277 C1 #> 3 0.309 C1 #> 4 0.277 C1 #> 5 0.272 C1 #> 6 0.316 C1 #> 7 0.256 C1 #> 8 0.312 C1 #> 9 0.275 C1 #> 10 0.323 C1 #> # … with 4,990 more rows #> #> $model #> $model$a #> C1 C2 #> 337.90647 12.02775 #> #> $model$b #> C1 C2 #> 810.2402 104.4470 #> #> $model$shape #> [1] 1 #> #> $model$scale #> [1] 0.05 #> #> $model$pi #> Tail C1 C2 #> 0.3154021 0.2671822 0.4174157 #> #> #> $plot#>