Extract the clustering assignments, and return the data.
Assignments can be computed subsetting the mutations that have posterior
values (reponsibilities) below a certain cutoff (default 0
- all
assigments); non-assigned mutations have NA
as cluster label.
Clusters(x, cutoff_assignment = 0)
x | A MOBSTER fit. |
---|---|
cutoff_assignment | Cutoff to compute hard clustering assignments. |
The data stored in x$data
with a column label
reporting
the assigned cluster, or NA
if the maximum cluster probability is below
the threshold value cutoff_assignment
.
#> # A tibble: 5,000 x 5 #> VAF cluster Tail C1 C2 #> <dbl> <chr> <dbl> <dbl> <dbl> #> 1 0.497 C1 0.00736 0.993 5.22e-27 #> 2 0.490 C1 0.00669 0.993 4.42e-26 #> 3 0.470 C1 0.00705 0.993 1.31e-23 #> 4 0.517 C1 0.0130 0.987 1.83e-29 #> 5 0.506 C1 0.00903 0.991 3.86e-28 #> 6 0.440 C1 0.0179 0.982 9.68e-20 #> 7 0.428 C1 0.0347 0.965 3.88e-18 #> 8 0.523 C1 0.0164 0.984 3.97e-30 #> 9 0.482 C1 0.00648 0.994 3.87e-25 #> 10 0.499 C1 0.00759 0.992 3.20e-27 #> # … with 4,990 more rows# Add some cutoff to filter assignments Clusters(fit_example$best, cutoff_assignment = .8)#> # A tibble: 5,000 x 5 #> VAF cluster Tail C1 C2 #> <dbl> <chr> <dbl> <dbl> <dbl> #> 1 0.497 C1 0.00736 0.993 5.22e-27 #> 2 0.490 C1 0.00669 0.993 4.42e-26 #> 3 0.470 C1 0.00705 0.993 1.31e-23 #> 4 0.517 C1 0.0130 0.987 1.83e-29 #> 5 0.506 C1 0.00903 0.991 3.86e-28 #> 6 0.440 C1 0.0179 0.982 9.68e-20 #> 7 0.428 C1 0.0347 0.965 3.88e-18 #> 8 0.523 C1 0.0164 0.984 3.97e-30 #> 9 0.482 C1 0.00648 0.994 3.87e-25 #> 10 0.499 C1 0.00759 0.992 3.20e-27 #> # … with 4,990 more rows