Skip to contents

Disclaimer: RACES/rRACES internally implements the probability distributions using the C++11 random number distribution classes. The standard does not specify their algorithms, and the class implementations are left free for the compiler. Thus, the simulation output depends on the compiler used to compile RACES, and because of that, the results reported in this article may differ from those obtained by the reader.

rRACES/RACES can simulate genomic mutations on the cells represented in a SamplesForest according to the specified SBS and indel mutational signatures (see vignette["mutations"]). This task is achieved by the mutation engine which uses two indices on the reference genome to place the most probable mutations according to signatures: the context index and the repeted sequence index.

The function MutationEngine() builds the mutation engine and these two indices.

Customizing the mutation engine

While the most convient way to invoke MutationEngine() is by using the parameter setup_code (see vignette["mutations"]), the are cases in which a custom set-up is required. In these cases, the function MutationEngine() can be called by specifying the name of the set-up directory, the path or URL of the reference sequence, the signature files, the driver mutation file, the passenger CNAs file, and the germline data directory.

library("rRACES")

reference_url <- paste0("https://ftp.ensembl.org/pub/grch37/release-111/",
                        "fasta/homo_sapiens/dna/Homo_sapiens.GRCh37.",
                        "dna.chromosome.22.fa.gz")

sbs_url <- paste0("https://cancer.sanger.ac.uk/signatures/documents/2123/",
                  "COSMIC_v3.4_SBS_GRCh37.txt")

indel_url <- paste0("https://cancer.sanger.ac.uk/signatures/documents/",
                    "2121/COSMIC_v3.4_ID_GRCh37.txt")

drivers_url <- paste0("https://raw.githubusercontent.com/",
                      "caravagnalab/rRACES/main/inst/extdata/",
                      "driver_mutations_hg19.csv")

passenger_cnas_url <- paste0("https://raw.githubusercontent.com/",
                             "caravagnalab/rRACES/main/inst/extdata/",
                             "passenger_CNAs_hg19.csv")

germline_url <- paste0("https://zenodo.org/records/13166780/files/",
                       "germline_data_demo.tar.gz")

# build a mutation engine and place all the files in the directory "Test"
m_engine <- MutationEngine(directory = "Test",
                           reference_src = reference_url,
                           SBS_signatures_src = sbs_url,
                           indel_signatures_src = indel_url,
                           drivers_src = drivers_url,
                           passenger_CNAs_src = passenger_cnas_url,
                           germline_src = germline_url)
#> Downloading reference genome...
#> Reference genome downloaded
#> Decompressing reference file...done
#> Downloading SBS file...
#> SBS file downloaded
#> Downloading indel file...
#> indel file downloaded
#> Downloading driver mutation file...
#> Driver mutation file downloaded
#> Downloading passenger CNAs file...
#> Passenger CNAs file downloaded
#> Downloading germline mutations...
#> Germline mutations downloaded
#> Building context index...
#>  [█---------------------------------------] 0% [00m:00s] Processing chr. 22 [█████████████████-----------------------] 40% [00m:01s] Processing chr. 22 [█████████████████████████████████-------] 81% [00m:02s] Processing chr. 22 [████████████████████████████████████████] 100% [00m:02s] Context index built
#>  [█---------------------------------------] 0% [00m:00s] Saving context index [████████████████████████████████████████] 100% [00m:00s] Context index saved
#> done
#> Building repeated sequence index...
#>  [█---------------------------------------] 0% [00m:00s] Processing chr. 22 [█---------------------------------------] 0% [00m:00s] Processing chr. 22 [█---------------------------------------] 0% [00m:01s] Processing chr. 22 [█---------------------------------------] 0% [00m:04s] Processing chr. 22 [█---------------------------------------] 0% [00m:05s] Processing chr. 22 [█---------------------------------------] 0% [00m:07s] Processing chr. 22 [█---------------------------------------] 0% [00m:08s] Processing chr. 22 [█---------------------------------------] 0% [00m:11s] Processing chr. 22 [█---------------------------------------] 0% [00m:15s] Processing chr. 22 [████████████████████████████████████████] 100% [00m:15s] RS index built
#>  [█---------------------------------------] 0% [00m:00s] Saving RS index [█---------------------------------------] 0% [00m:00s] Saving RS index [███████████████████████-----------------] 57% [00m:02s] Saving RS indexdone
#>  [████████████████████████████████████████] 100% [00m:02s] RS index saved
#>  [█---------------------------------------] 0% [00m:00s] Loading germline [████████████████████████████████████████] 100% [00m:00s] Germline loaded
#>  [█---------------------------------------] 0% [00m:00s] Saving germline [████████████████████████████████████████] 100% [00m:00s] Germline saved

dir.exists("Test")
#> [1] TRUE

The Context Index

The SBS signatures fixes, for every possible context (i.e., a triplet of consetutive nucleotides), the probability for a SNV to occur in such a context (see (Alexandrov et al. 2020)). Hence, the function MutationEngine() builds a context index of the reference sequence to place SNVs on the forest cells. The complete context index of a sequence whose size is up to 4Gbps takes 4 times the length of the sequence itself both in memory and on the disk because 4 bytes per nucleotide are required to store the context position. For instance, the complete contex index of a human genome takes about 12GBytes. In order to avoid such requirement in memory and disk space, MutationEngine() allows to sample the reference genome contexts and to stores only some of the them in the context index. This is achieved by the optional parameter context_sampling which specifies how many occurences of the same context must be identified before adding one of them to the context index. The larger the number of context sampling, the larger the context index. On the other side, the lower the number of context sampling, the lower the number of sites in the refernce genome that can be affected by simulated mutations. The context_sampling is set to 100 by default, but it can be specified during the MutationEngine() call.

m_engine <- MutationEngine(setup_code = "demo")
#> Downloading reference genome...
#> Reference genome downloaded
#> Decompressing reference file...done
#> Downloading SBS file...
#> SBS file downloaded
#> Downloading indel file...
#> indel file downloaded
#> Downloading driver mutation file...
#> Driver mutation file downloaded
#> Downloading passenger CNAs file...
#> Passenger CNAs file downloaded
#> Downloading germline mutations...
#> Germline mutations downloaded
#> Building context index...
#>  [█---------------------------------------] 0% [00m:00s] Processing chr. 22 [█████████████---------------------------] 32% [00m:01s] Processing chr. 22 [███████████████████████████-------------] 65% [00m:02s] Processing chr. 22 [████████████████████████████████████████] 100% [00m:02s] Context index built
#>  [█---------------------------------------] 0% [00m:00s] Saving context index [████████████████████████████████████████] 100% [00m:00s] Context index saved
#> done
#> Building repeated sequence index...
#>  [█---------------------------------------] 0% [00m:00s] Processing chr. 22 [█---------------------------------------] 0% [00m:00s] Processing chr. 22 [█---------------------------------------] 0% [00m:03s] Processing chr. 22 [█---------------------------------------] 0% [00m:05s] Processing chr. 22 [█---------------------------------------] 0% [00m:06s] Processing chr. 22 [█---------------------------------------] 0% [00m:08s] Processing chr. 22 [█---------------------------------------] 0% [00m:10s] Processing chr. 22 [█---------------------------------------] 0% [00m:14s] Processing chr. 22 [████████████████████████████████████████] 100% [00m:14s] RS index built
#>  [█---------------------------------------] 0% [00m:00s] Saving RS index [█---------------------------------------] 0% [00m:00s] Saving RS index [████████████████████████----------------] 58% [00m:02s] Saving RS indexdone
#>  [████████████████████████████████████████] 100% [00m:02s] RS index saved
#>  [█---------------------------------------] 0% [00m:00s] Loading germline [████████████████████████████████████████] 100% [00m:00s] Germline loaded
#>  [█---------------------------------------] 0% [00m:00s] Saving germline [████████████████████████████████████████] 100% [00m:00s] Germline saved

# get the size of the context index when `context_sampling` is 100
utils:::format.object_size(file.size("demo/context_index_100.cif"), "auto")
#> [1] "1.3 Mb"

Let us rebuild the context index sampling one context every 50.

# building a mutation engine by using the "demo" set-up configuration
# and setting context_sampling to 50
m_engine <- MutationEngine(setup_code = "demo", context_sampling = 50)
#> Building context index...
#>  [█---------------------------------------] 0% [00m:00s] Processing chr. 22 [█████████████████-----------------------] 40% [00m:01s] Processing chr. 22 [██████████████████████████████----------] 73% [00m:02s] Processing chr. 22 [████████████████████████████████████████] 100% [00m:02s] Context index built
#>  [█---------------------------------------] 0% [00m:00s] Saving context index [████████████████████████████████████████] 100% [00m:00s] Context index saved
#> done
#>  [█---------------------------------------] 0% [00m:00s] Loading RS index [██████████████--------------------------] 34% [00m:01s] Loading RS index [█████████████████████████████-----------] 70% [00m:02s] Loading RS index [████████████████████████████████████████] 100% [00m:02s] RS index loaded
#>  [█---------------------------------------] 0% [00m:00s] Loading germline [████████████████████████████████████████] 100% [00m:00s] Germline loaded

Above call uses the already downloaded data in the directory "demo" to build the context and produces the file "demo/context_index_50.cif".

# get the size of the context index when `context_sampling` is 50
utils:::format.object_size(file.size("demo/context_index_50.cif"), "auto")
#> [1] "2.7 Mb"

The Repeated Sequence Index

Analoguosly to the SBS signatures, the ID (indel) signatures fixes, for some kinds of repeated sequences, the probability for an indel to occur in them (see (Alexandrov et al. 2020)). Thus, the MutationEngine function also builds an index for the repeated sequences in the reference. As in the case of the SBS signatures, the ID signatures can be memory eager. To mitigate the memory requirement, the function MutationEngine() accepts as parameters the maximum size of the considered indel (the parameter max_index_size) and the maximum number of reference position stored per repetition type (the parameter max_repetition_storage). The larger the two parameters, the larger the repetition index. As far the building time concerns, the larger max_index_size, the longer takes the index construction. On the contrary, max_repetition_storage does not directly affects the computation time. By default, the two parameters are set to 50 and 500000, respectively. However, their values can be specified during the MutationEngine() call.

# get the size of the repeated index when the default parameter values
# are used
utils:::format.object_size(file.size("demo/rs_index_50_500000.rsif"), "auto")
#> [1] "212.5 Mb"

Let us rebuild the context index sampling one context every 50.

# building a mutation engine by using the "demo" set-up configuration
# and setting max_repetition_storage to 10,000,000
m_engine <- MutationEngine(setup_code = "demo",
                           max_repetition_storage = 10000000)
#>  [█---------------------------------------] 0% [00m:00s] Loading context index [████████████████████████████████████████] 100% [00m:00s] Context index loaded
#> Building repeated sequence index...
#>  [█---------------------------------------] 0% [00m:00s] Processing chr. 22 [█---------------------------------------] 0% [00m:00s] Processing chr. 22 [█---------------------------------------] 0% [00m:03s] Processing chr. 22 [█---------------------------------------] 0% [00m:05s] Processing chr. 22 [█---------------------------------------] 0% [00m:06s] Processing chr. 22 [█---------------------------------------] 0% [00m:08s] Processing chr. 22 [█---------------------------------------] 0% [00m:09s] Processing chr. 22 [█---------------------------------------] 0% [00m:11s] Processing chr. 22 [████████████████████████████████████████] 100% [00m:12s] RS index built
#>  [█---------------------------------------] 0% [00m:00s] Saving RS index [█---------------------------------------] 0% [00m:00s] Saving RS index [█---------------------------------------] 0% [00m:01s] Saving RS index [█---------------------------------------] 0% [00m:02s] Saving RS index [█---------------------------------------] 0% [00m:03s] Saving RS index [█---------------------------------------] 0% [00m:04s] Saving RS index [███████---------------------------------] 17% [00m:06s] Saving RS index [█████████████---------------------------] 32% [00m:07s] Saving RS index [██████████████████████------------------] 54% [00m:08s] Saving RS index [██████████████████████████████----------] 73% [00m:09s] Saving RS index [█████████████████████████████████████---] 92% [00m:10s] Saving RS indexdone
#>  [████████████████████████████████████████] 100% [00m:10s] RS index saved
#>  [█---------------------------------------] 0% [00m:00s] Loading germline [████████████████████████████████████████] 100% [00m:00s] Germline loaded

Above call uses the already downloaded data in the directory "demo" to build the repeated sequence index and produces the file "demo/rs_index_50_10000000.rsif".

# get the size of the context index when `context_sampling` is 50
utils:::format.object_size(file.size("demo/rs_index_50_10000000.rsif"),
                           "auto")
#> [1] "732.1 Mb"
Alexandrov, Ludmil B, Jaegil Kim, Nicholas J Haradhvala, Mi Ni Huang, Alvin Wei Tian Ng, Yang Wu, Arnoud Boot, et al. 2020. “The Repertoire of Mutational Signatures in Human Cancer.” Nature 578 (7793): 94–101.