Perform some basic diagnostic of a cohort object. It will inform of patients without drivers and other information that can be used to reshape the data before fitting a model.

revolver_check_cohort(x, stopOnError = FALSE)

Arguments

x

A REVOLVER cohort.

stopOnError

Whether or not it should raise a stop on error.

Value

Nothing, all relevant information are print to screen and the stop is raised only if stopOnError = TRUE.

See also

Examples

# Data released in the 'evoverse.datasets' data('TRACERx_NEJM_2017_REVOLVER', package = 'evoverse.datasets') revolver_check_cohort(TRACERx_NEJM_2017_REVOLVER)
#> ┌───────────────────────────────────────────────────────────────────────────────────────────┐ #> #> WARNING - Some patients have only one clone with drivers; they will just be expanded. #> #> └───────────────────────────────────────────────────────────────────────────────────────────┘ #> # A tibble: 54 x 7 #> patientID numBiopsies numMutations numDriverMutations numClonesWithDriver #> <chr> <int> <int> <int> <int> #> 1 CRUK0007 2 3 3 1 #> 2 CRUK0010 2 3 3 1 #> 3 CRUK0012 2 1 1 1 #> 4 CRUK0018 4 4 4 1 #> 5 CRUK0019 2 1 1 1 #> 6 CRUK0021 2 4 4 1 #> 7 CRUK0025 3 3 3 1 #> 8 CRUK0026 2 4 4 1 #> 9 CRUK0028 2 2 2 1 #> 10 CRUK0029 6 4 4 1 #> # … with 44 more rows, and 2 more variables: numTruncalMutations <int>, #> # numSubclonalMutations <int>
print(TRACERx_NEJM_2017_REVOLVER) # calls this anyway
#> [ REVOLVER - Repeated Evolution in Cancer ] #> #> Dataset : TRACERx NEJM 2017 #> Cohort : 99 patients, 450 variants and 79 driver events. #> #> Trees per patient : YES #> Fit via TL : YES #> REVOLVER clustering : YES #> Jackknife statistics : YES #> #> For summary statistics see `?Stats_*(x)` with * = {cohort, drivers, trees, fits, clusters, ...} #> #> ┌───────────────────────────────────────────────────────────────────────────────────────────┐ #> #> WARNING - Some patients have only one clone with drivers; they will just be expanded. #> #> └───────────────────────────────────────────────────────────────────────────────────────────┘ #> # A tibble: 54 x 7 #> patientID numBiopsies numMutations numDriverMutations numClonesWithDriver #> <chr> <int> <int> <int> <int> #> 1 CRUK0007 2 3 3 1 #> 2 CRUK0010 2 3 3 1 #> 3 CRUK0012 2 1 1 1 #> 4 CRUK0018 4 4 4 1 #> 5 CRUK0019 2 1 1 1 #> 6 CRUK0021 2 4 4 1 #> 7 CRUK0025 3 3 3 1 #> 8 CRUK0026 2 4 4 1 #> 9 CRUK0028 2 2 2 1 #> 10 CRUK0029 6 4 4 1 #> # … with 44 more rows, and 2 more variables: numTruncalMutations <int>, #> # numSubclonalMutations <int>