TINC is a package to estimate Tumour-in-Normal (TIN) and Tumour-in-Tumour (TIT) scores for a matched tumour-normal assay (ideally, a whole-genome one).

Input formats

TINC takes as input mutation data, with read counts reported for both the tumour and the matched normal.

Somatic mutations. Input mutations should report the following information:

  • the mutation genomic coordinates, and the substituted alleles: chr, from, to, ref and alt
  • he number of total reads witht the reference and alternative alleles in the normal sample: n_ref_count and n_alt_count.
  • the analogous information for the tumour sample: t_ref_count and t_tot_count.

Example input mutations are shown below.

Copy number segments. Optionally, allele-specific copy number segments can also be used These can be extremely important if the sample has high levels of aneuploidy, and we do suggest to use those in such cases.

Copy number segments data must follow the formats from the CNAqc package:

  • genomic coordinates of a segment: chr, from and to
  • the allele-specific ploidy value for the Major and minor alleles
# devtools::install_github("caravagnalab/CNAqc")
require(CNAqc)
#> Loading required package: CNAqc

# This is the format
CNAqc::example_dataset_CNAqc$cna %>% print
#> # A tibble: 267 × 7
#>    chr       from       to  length covRatio Major minor
#>    <chr>    <int>    <int>   <int>    <dbl> <dbl> <dbl>
#>  1 chr1    840009  1689987  849979     1.19     3     2
#>  2 chr1   1689988  1815015  125028     1.26     3     2
#>  3 chr1   1815016  9799969 7984954     1.19     3     2
#>  4 chr1  10479910 12079917 1600008     1.19     3     2
#>  5 chr1  12079917 12154980   75064     1.24     3     2
#>  6 chr1  12154981 12839977  684997     1.19     3     2
#>  7 chr1  13780016 17790026 4010011     1.19     3     2
#>  8 chr1  17849962 21080067 3230106     1.19     3     2
#>  9 chr1  21080068 21559998  479931     1.26     3     2
#> 10 chr1  21559998 24830001 3270004     1.19     3     2
#> # ℹ 257 more rows