Skip to contents

Prior distribution of copy number and mutation multiplicity from PCAWG.

Usage

data(priors_eta)

Format

A data frame with 12 rows and 6 columns:

tumor_type

Tumor type.

mean_eta

Mean of the distribution

var_eta

Variance of the distribution

N

Total number of samples

alpha_eta

Shape parameter alpha of the distribution

beta_eta

Shape parameter beta of the distribution

Source

Validated copy number calls from PCAWG: https://doi.org/10.5281/zenodo.6410935

Examples

data(priors_eta)
priors_eta
#> # A tibble: 12 × 6
#>    tumor_type mean_eta var_eta     N alpha_eta beta_eta
#>    <chr>         <dbl>   <dbl> <int>     <dbl>    <dbl>
#>  1 BRCA           320.  31113.  2271      3.28  0.0103 
#>  2 ESCA           357.  28769.   285      4.44  0.0124 
#>  3 GIST           340.  61998.   299      1.87  0.00549
#>  4 HCC            304.  16885.   171      5.48  0.0180 
#>  5 LUAD           353.  34458.  3406      3.61  0.0102 
#>  6 MEL            304.  28999.  1042      3.19  0.0105 
#>  7 OV             316.  19945.   936      5.01  0.0159 
#>  8 PAAD           334.  15101.  1698      7.38  0.0221 
#>  9 PRAD           283.  21340.   223      3.75  0.0133 
#> 10 SCLC           372.  45882.   255      3.01  0.00811
#> 11 STAD           298.  17672.    85      5.04  0.0169 
#> 12 PANCA          332.  29352. 10732      3.75  0.0113