Prior distribution of copy number and mutation multiplicity from PCAWG.
Usage
data(priors_eta)
Format
A data frame with 12 rows and 6 columns:
- tumor_type
Tumor type.
- mean_eta
Mean of the distribution
- var_eta
Variance of the distribution
- N
Total number of samples
- alpha_eta
Shape parameter alpha of the distribution
- beta_eta
Shape parameter beta of the distribution
Examples
data(priors_eta)
priors_eta
#> # A tibble: 12 × 6
#> tumor_type mean_eta var_eta N alpha_eta beta_eta
#> <chr> <dbl> <dbl> <int> <dbl> <dbl>
#> 1 BRCA 320. 31113. 2271 3.28 0.0103
#> 2 ESCA 357. 28769. 285 4.44 0.0124
#> 3 GIST 340. 61998. 299 1.87 0.00549
#> 4 HCC 304. 16885. 171 5.48 0.0180
#> 5 LUAD 353. 34458. 3406 3.61 0.0102
#> 6 MEL 304. 28999. 1042 3.19 0.0105
#> 7 OV 316. 19945. 936 5.01 0.0159
#> 8 PAAD 334. 15101. 1698 7.38 0.0221
#> 9 PRAD 283. 21340. 223 3.75 0.0133
#> 10 SCLC 372. 45882. 255 3.01 0.00811
#> 11 STAD 298. 17672. 85 5.04 0.0169
#> 12 PANCA 332. 29352. 10732 3.75 0.0113