Prior distribution of copy number and mutation multiplicity from PCAWG.
Usage
data(pcawg_priors)
Format
A data frame with 4466 rows and 4 columns:
- gene
Name of the gene (Hugo Symbol).
- tumor_type
Tumor type.
- label
INCOMMON class (
N (Mutated: N)). - p
Gene and tumor type specific prior probability.
Examples
data(pcawg_priors)
pcawg_priors
#> # A tibble: 4,466 × 4
#> gene tumor_type label p
#> <chr> <chr> <chr> <dbl>
#> 1 ALB HCC 1N (Mutated: 1N) 0.151
#> 2 ALB HCC 2N (Mutated: 1N) 0.593
#> 3 ALB HCC 2N (Mutated: 2N) 0.0474
#> 4 ALB HCC 3N (Mutated: 1N) 0.0727
#> 5 ALB HCC 3N (Mutated: 2N) 0.0485
#> 6 ALB HCC 4N (Mutated: 1N) 0.0198
#> 7 ALB HCC 4N (Mutated: 2N) 0.0683
#> 8 APOB HCC 1N (Mutated: 1N) 0.151
#> 9 APOB HCC 2N (Mutated: 1N) 0.593
#> 10 APOB HCC 2N (Mutated: 2N) 0.0474
#> # ℹ 4,456 more rows