Fit multivariate Cox regression model based on INCOMMON classes.
Usage
cox_fit(
x,
gene,
tumor_type,
survival_time,
survival_status,
covariates = c("age", "sex", "tmb"),
tmb_method = "median"
)
Arguments
- x
An object of class
'INCOMMON'
containing the classification results as produced by functionclassify
.- gene
The gene on which patient's stratification is based.
- tumor_type
The tumor type of patients to stratify.
- survival_time
The variable in
clincal_data
to be used as survival time.- survival_status
The variable in
clincal_data
to be used as survival status.- covariates
The other covariates to be used in the mutlivariate regression.
- tmb_method
The method to define the reference value for tumor mutational burden TMB
Examples
# First load example classified data
data(MSK_PAAD_output)
# Perform Cox regression based on the classification of KRAS mutant samples of pancreatic adenocarcinoma
MSK_PAAD_output = cox_fit(x = MSK_PAAD_output, tumor_type = 'PAAD', gene = 'KRAS', survival_time = 'OS_MONTHS', survival_status = 'OS_STATUS', covariates = c('age', 'sex', 'tmb'), tmb_method = ">10")
#> Joining with `by = join_by(id)`
#> [1] "Cox fit with INCOMMON groups:"
#> Call:
#> survival::coxph(formula = formula %>% stats::as.formula(), data = data %>%
#> as.data.frame())
#>
#> coef exp(coef) se(coef) z p
#> groupBalanced Dosage 0.8179 2.2658 0.1159 7.058 1.69e-12
#> groupHigh Dosage 1.1569 3.1801 0.1242 9.318 < 2e-16
#> groupLow Dosage 0.6840 1.9818 0.1177 5.810 6.24e-09
#>
#> Likelihood ratio test=102.1 on 3 df, p=< 2.2e-16
#> n= 1772, number of events= 1090
#> (7 observations deleted due to missingness)
#> [1] "Pairwise tests:"
#>
#> Simultaneous Tests for General Linear Hypotheses
#>
#> Fit: survival::coxph(formula = formula %>% stats::as.formula(), data = data %>%
#> as.data.frame())
#>
#> Linear Hypotheses:
#> Estimate Std. Error z value
#> `groupHigh Dosage` - `groupBalanced Dosage` == 0 0.33900 0.08156 4.156
#> `groupLow Dosage` - `groupBalanced Dosage` == 0 -0.13391 0.07299 -1.835
#> Pr(>|z|)
#> `groupHigh Dosage` - `groupBalanced Dosage` == 0 6.45e-05 ***
#> `groupLow Dosage` - `groupBalanced Dosage` == 0 0.123
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> (Adjusted p values reported -- single-step method)
#>