Fit multivariate Cox regression model based on INCOMMON classes.
Usage
cox_fit(
x,
gene,
tumor_type,
survival_time,
survival_status,
covariates = c("age", "sex", "tmb"),
tmb_method = "median"
)
Arguments
- x
An object of class
'INCOMMON'
containing the classification results as produced by functionclassify
.- gene
The gene on which patient's stratification is based.
- tumor_type
The tumor type of patients to stratify.
- survival_time
The variable in
clincal_data
to be used as survival time.- survival_status
The variable in
clincal_data
to be used as survival status.- covariates
The other covariates to be used in the mutlivariate regression.
- tmb_method
The method to define the reference value for tumor mutational burden TMB
Examples
# First load example classified data
data(MSK_classified)
# Perform Cox regression based on the classification of KRAS mutant samples of pancreatic adenocarcinoma
MSK_classified = cox_fit(x = MSK_classified, tumor_type = 'PAAD', gene = 'KRAS', survival_time = 'OS_MONTHS', survival_status = 'OS_STATUS', covariates = c('age', 'sex', 'tmb'), tmb_method = ">10")
#> ℹ There are 20289 different genotypes
#> ℹ The most abundant genotypes are:
#> • Mutant TP53 with LOH (562 Samples, Frequency 0.02)
#> • Mutant KRAS without AMP (199 Samples, Frequency 0.01)
#> • Mutant KRAS without AMP,Mutant TP53 with LOH (149 Samples, Frequency 0.01)
#> Call:
#> survival::coxph(formula = formula %>% stats::as.formula(), data = data %>%
#> as.data.frame())
#>
#> coef exp(coef) se(coef) z p
#> groupMutant KRAS with AMP 0.41896 1.52039 0.13594 3.082 0.00206
#> groupMutant KRAS without AMP 0.13670 1.14649 0.13460 1.016 0.30980
#> AGE_AT_DEATH>68 -1.32060 0.26698 0.23843 -5.539 3.05e-08
#> AGE_AT_SEQUENCING>67 1.23185 3.42756 0.23771 5.182 2.19e-07
#> SEXMale 0.13644 1.14619 0.06167 2.213 0.02693
#> TMB_NONSYNONYMOUS> 10 0.56316 1.75621 0.26202 2.149 0.03161
#>
#> Likelihood ratio test=70.61 on 6 df, p=3.068e-13
#> n= 1066, number of events= 1066
#> (656 observations deleted due to missingness)