Skip to contents

Compute model posterior and entropy

Usage

compute_posterior(
  NV,
  DP,
  gene,
  priors = NULL,
  tumor_type,
  purity,
  entropy_cutoff,
  rho = 0.01,
  karyotypes
)

Arguments

NV

Number of reads with the variant.

DP

Sequencing coverage of the mutated genome site.

gene

Gene name or symbol.

priors

Prior distribution.

tumor_type

Tumor type of the sample.

purity

Purity of the sample.

entropy_cutoff

Cut-off on entropy for Tier-1/Tier-2 distinction.

rho

The over-dispersion parameter.

karyotypes

Karyotypes to be included among the possible classes.

Value

A table including ploidy, multiplicity, posterior probability, and classification entropy.

Examples

compute_posterior(
NV = 170,
DP = 200,
gene = 'TP53',
priors = pcawg_priors,
tumor_type = 'PAAD',
purity = 0.9,
entropy_cutoff = 0.2,
rho = 0.01,
karyotypes = c("1:0", "1:1", "2:0", "2:1", "2:2")
)
#> # A tibble: 1,600 × 11
#>       NV    value Major minor ploidy multiplicity karyotype label  peak  entropy
#>    <int>    <dbl> <int> <int>  <int>        <int> <chr>     <chr> <dbl>    <dbl>
#>  1     1 3.45e-55     1     0      1            1 1:0       1N (… 0.818 1.42e-11
#>  2     1 1.02e-24     1     1      2            1 1:1       2N (… 0.45  1.42e-11
#>  3     1 1.02e-24     2     0      2            1 2:0       2N (… 0.45  1.42e-11
#>  4     1 3.16e-65     2     0      2            2 2:0       2N (… 0.9   1.42e-11
#>  5     1 2.79e-17     2     1      3            1 2:1       3N (… 0.310 1.42e-11
#>  6     1 4.68e-38     2     1      3            2 2:1       3N (… 0.621 1.42e-11
#>  7     1 3.44e-13     2     2      4            1 2:2       4N (… 0.237 1.42e-11
#>  8     1 4.00e-27     2     2      4            2 2:2       4N (… 0.474 1.42e-11
#>  9     2 1.30e-53     1     0      1            1 1:0       1N (… 0.818 1.17e-10
#> 10     2 1.84e-23     1     1      2            1 1:1       2N (… 0.45  1.17e-10
#> # ℹ 1,590 more rows
#> # ℹ 1 more variable: state <chr>