This functions plots the data as histogram, coloured according to the hard clustering assignments. This function must receive in input exactly the same data used for the fit.

plot_clusters(x, data)

Arguments

x

An object of class bmix that represents a fit.

data

The data used to compute the fit x.

Value

A ggplot object.

Examples

# The same dataset used in the package vignette data = data.frame(successes = c(rbinom(30, 100, .4), rbinom(70, 100, .7)), trials = 100) # BMix fit with default parameters x = bmixfit(data)
#>
#> ── BMix fit ────────────────────────────────────────────────────────────────────
#>
#> Binomials k_B = 1 and 2, Beta-Binomials k_BB = 0; 4 fits to run.
#>
#> Bmix best fit completed in 0 mins
#>
#> ── [ BMix ] My BMix model n = 100 with k = 2 component(s) (2 + 0) ──────────────
#> • Clusters: π = 70% [Bin 2] and 30% [Bin 1], with π > 0.
#> • Binomial Bin 1 with mean = 0.405686308124697.
#> • Binomial Bin 2 with mean = 0.702142726335277.
#> Score (model selection): ICL = 740.62.
plot_clusters(x, data)
#> Warning: Removed 4 rows containing missing values (geom_bar).