This function extracts the mixture parameters as a tibble. The tibble contains one row per component, a column for the mean of the mixture component and a column for its overdispersion. All the Binomial components have a fixed value of 0 for overdispersion..

Parameters(x)

Arguments

x

An object of class bmix that represents a fit.

Value

A tibble for the the fit parameters of the mixture.

Examples

# The same dataset used in the package vignette data = data.frame(successes = c(rbinom(30, 100, .4), rbinom(70, 100, .7)), trials = 100) # BMix fit with default parameters x = bmixfit(data)
#>
#> ── BMix fit ────────────────────────────────────────────────────────────────────
#>
#> Binomials k_B = 1 and 2, Beta-Binomials k_BB = 0; 4 fits to run.
#>
#> Bmix best fit completed in 0 mins
#>
#> ── [ BMix ] My BMix model n = 100 with k = 2 component(s) (2 + 0) ──────────────
#> • Clusters: π = 70% [Bin 2] and 30% [Bin 1], with π > 0.
#> • Binomial Bin 1 with mean = 0.400370622993129.
#> • Binomial Bin 2 with mean = 0.691716600034388.
#> Score (model selection): ICL = 726.77.
Parameters(x)
#> # A tibble: 2 x 3 #> cluster mean overdispersion #> <chr> <dbl> <dbl> #> 1 Bin 1 0.400 0 #> 2 Bin 2 0.692 0