This function extracts the mixture parameters as a tibble. The tibble contains one row per component, a column for the mean of the mixture component and a column for its overdispersion. All the Binomial components have a fixed value of 0 for overdispersion..
Parameters(x)
x | An object of class |
---|
A tibble for the the fit parameters of the mixture.
# The same dataset used in the package vignette data = data.frame(successes = c(rbinom(30, 100, .4), rbinom(70, 100, .7)), trials = 100) # BMix fit with default parameters x = bmixfit(data)#>#>#>#> ℹ Binomials k_B = 1 and 2, Beta-Binomials k_BB = 0; 4 fits to run.#>#> ℹ Bmix best fit completed in 0 mins#>#> [ BMix ] My BMix model n = 100 with k = 2 component(s) (2 + 0) ──────────────#> Bin 2] and 30% [Bin 1], with π > 0.#> Bin 1 with mean = 0.400370622993129.#> Bin 2 with mean = 0.691716600034388.#> ℹ Score (model selection): ICL = 726.77.Parameters(x)#> # A tibble: 2 x 3 #> cluster mean overdispersion #> <chr> <dbl> <dbl> #> 1 Bin 1 0.400 0 #> 2 Bin 2 0.692 0