Fit clustering
fit_clustering.Rd
Fit clustering
Usage
fit_clustering(
x,
cluster,
hyperparameters = NULL,
lr = 0.005,
optim_gamma = 0.1,
n_steps = 3000,
py = NULL,
enumer = "parallel",
nonparametric = TRUE,
autoguide = TRUE,
CUDA = TRUE,
compile = FALSE,
store_parameters = FALSE,
store_fits = TRUE,
seed_list = c(10)
)
Arguments
- x
Bascule object with signatures deconvolution performed.
- cluster
Maximum number of clusters.
- hyperparameters
List of hyperparameters passed to the NMF and clustering models.
- lr
Learning rate for SVI optimizer.
- optim_gamma
Deprecated.
- n_steps
Number of steps for the inference.
- py
User-installed version of
pybascule
package- enumer
Enumeration used for clustering (either `parallel` or `sequential`).
- nonparametric
Deprecated. The model only works in nonparametric way.
- autoguide
Logical. If `TRUE`, the clustering model will use the Pyro autoguide.
- CUDA
Logical. If `TRUE` and a GPU is available, the models will run on GPU.
- compile
Deprecated.
- store_parameters
Logical. If `TRUE`, parameters at every step of inference will be stored in the object.
- store_fits
Logical. If `TRUE`, all tested fits, i.e., for every value of `K`, will be stored in the object.
- seed_list
List of seeds used for every input configuration.